Package: immer 1.6-1

immer: Item Response Models for Multiple Ratings

Implements some item response models for multiple ratings, including the hierarchical rater model, conditional maximum likelihood estimation of linear logistic partial credit model and a wrapper function to the commercial FACETS program. See Robitzsch and Steinfeld (2018) for a description of the functionality of the package. See Wang, Su and Qiu (2014; <doi:10.1111/jedm.12045>) for an overview of modeling alternatives.

Authors:Alexander Robitzsch [aut, cre], Jan Steinfeld [aut]

immer_1.6-1.tar.gz
immer_1.6-1.zip(r-4.5)immer_1.6-1.zip(r-4.4)immer_1.6-1.zip(r-4.3)
immer_1.6-1.tgz(r-4.4-x86_64)immer_1.6-1.tgz(r-4.4-arm64)immer_1.6-1.tgz(r-4.3-x86_64)immer_1.6-1.tgz(r-4.3-arm64)
immer_1.6-1.tar.gz(r-4.5-noble)immer_1.6-1.tar.gz(r-4.4-noble)
immer_1.6-1.tgz(r-4.4-emscripten)immer_1.6-1.tgz(r-4.3-emscripten)
immer.pdf |immer.html
immer/json (API)
NEWS

# Install 'immer' in R:
install.packages('immer', repos = c('https://alexanderrobitzsch.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/alexanderrobitzsch/immer/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • data.immer01a - Some Example Datasets for the 'immer' Package
  • data.immer01b - Some Example Datasets for the 'immer' Package
  • data.immer02 - Some Example Datasets for the 'immer' Package
  • data.immer03 - Some Example Datasets for the 'immer' Package
  • data.immer04a - Some Example Datasets for the 'immer' Package
  • data.immer04b - Some Example Datasets for the 'immer' Package
  • data.immer05 - Some Example Datasets for the 'immer' Package
  • data.immer06 - Some Example Datasets for the 'immer' Package
  • data.immer07 - Some Example Datasets for the 'immer' Package
  • data.immer08 - Some Example Datasets for the 'immer' Package
  • data.immer09 - Some Example Datasets for the 'immer' Package
  • data.immer10 - Some Example Datasets for the 'immer' Package
  • data.immer11 - Some Example Datasets for the 'immer' Package
  • data.immer12 - Some Example Datasets for the 'immer' Package
  • data.ptam1 - Example Datasets for Robitzsch and Steinfeld
  • data.ptam2 - Example Datasets for Robitzsch and Steinfeld
  • data.ptam3 - Example Datasets for Robitzsch and Steinfeld
  • data.ptam4 - Example Datasets for Robitzsch and Steinfeld
  • data.ptam4long - Example Datasets for Robitzsch and Steinfeld
  • data.ptam4wide - Example Datasets for Robitzsch and Steinfeld

On CRAN:

item-response-theory

3.57 score 5 stars 15 scripts 381 downloads 17 exports 14 dependencies

Last updated 8 months agofrom:9e252a93a0. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-win-x86_64OKNov 16 2024
R-4.5-linux-x86_64OKNov 16 2024
R-4.4-win-x86_64OKNov 16 2024
R-4.4-mac-x86_64OKNov 16 2024
R-4.4-mac-aarch64OKNov 16 2024
R-4.3-win-x86_64OKNov 16 2024
R-4.3-mac-x86_64OKNov 16 2024
R-4.3-mac-aarch64OKNov 16 2024

Exports:immer_agree2immer_ccmlimmer_cmlimmer_create_design_matrix_formulaimmer_FACETSimmer_hrmimmer_hrm_simulateimmer_installimmer_jmlimmer_latent_regressionimmer_opcatimmer_proc_dataimmer_reshape_wideformatimmer_unique_patternslc2_agreementlogits2probsprobs2logits

Dependencies:admiscCDMcodalatticeMatrixmvtnormpbapplypbvpolycorpsychotoolsRcppRcppArmadillosirtTAM

Readme and manuals

Help Manual

Help pageTopics
Item Response Models for Multiple Ratingsimmer-package immer
Some Example Datasets for the 'immer' Packagedata.immer01a data.immer01b data.immer02 data.immer03 data.immer04a data.immer04b data.immer05 data.immer06 data.immer07 data.immer08 data.immer09 data.immer10 data.immer11 data.immer12
Example Datasets for Robitzsch and Steinfeld (2018)data.ptam1 data.ptam2 data.ptam3 data.ptam4 data.ptam4long data.ptam4wide
Agreement Statistics for 2 Ratersimmer_agree2 summary.immer_agree2
Composite Conditional Maximum Likelihood Estimation for the Partial Credit Model with a Design Matrix for Item Parameterscoef.immer_ccml immer_ccml summary.immer_ccml vcov.immer_ccml
Conditional Maximum Likelihood Estimation for the Linear Logistic Partial Credit Modelanova.immer_cml coef.immer_cml immer_cml logLik.immer_cml summary.immer_cml vcov.immer_cml
Wrapper to FACDOSimmer_FACETS summary.immer_FACETS
Hierarchical Rater Model (Patz et al., 2002)anova.immer_hrm immer_hrm IRT.likelihood.immer_hrm IRT.posterior.immer_hrm logLik.immer_hrm plot.immer_hrm summary.immer_hrm
Simulating the Hierarchical Rater Model (Patz et al., 2002)immer_hrm_simulate
Support for the installation of the DOS-version from FACETSimmer_install
Joint Maximum Likelihood Estimation for the Partial Credit Model with a Design Matrix for Item Parameters and \varepsilon-Adjustment Bias Correctionimmer_jml IRT.likelihood.immer_jml logLik.immer_jml summary.immer_jml
Unidimensional Latent Regressionanova.immer_latent_regression coef.immer_latent_regression immer_latent_regression logLik.immer_latent_regression summary.immer_latent_regression vcov.immer_latent_regression
Estimation of Integer Item Discriminationsimmer_opcat
Processing Datasets and Creating Design Matrices for Rating Dataimmer_create_design_matrix_formula immer_proc_data
Creating a Rating Dataset in Wide Formatimmer_reshape_wideformat
Extracts Unique Item Response Patternsimmer_unique_patterns
A Latent Class Model for Agreement of Two Ratersanova.lc2_agreement lc2_agreement logLik.lc2_agreement summary.lc2_agreement
Conversion of Probabilities into Logitslogits2probs probs2logits