Package: sirt 4.2-99
sirt: Supplementary Item Response Theory Models
Supplementary functions for item response models aiming to complement existing R packages. The functionality includes among others multidimensional compensatory and noncompensatory IRT models (Reckase, 2009, <doi:10.1007/978-0-387-89976-3>), MCMC for hierarchical IRT models and testlet models (Fox, 2010, <doi:10.1007/978-1-4419-0742-4>), NOHARM (McDonald, 1982, <doi:10.1177/014662168200600402>), Rasch copula model (Braeken, 2011, <doi:10.1007/s11336-010-9190-4>; Schroeders, Robitzsch & Schipolowski, 2014, <doi:10.1111/jedm.12054>), faceted and hierarchical rater models (DeCarlo, Kim & Johnson, 2011, <doi:10.1111/j.1745-3984.2011.00143.x>), ordinal IRT model (ISOP; Scheiblechner, 1995, <doi:10.1007/BF02301417>), DETECT statistic (Stout, Habing, Douglas & Kim, 1996, <doi:10.1177/014662169602000403>), local structural equation modeling (LSEM; Hildebrandt, Luedtke, Robitzsch, Sommer & Wilhelm, 2016, <doi:10.1080/00273171.2016.1142856>).
Authors:
sirt_4.2-99.tar.gz
sirt_4.2-99.zip(r-4.5)sirt_4.2-99.zip(r-4.4)sirt_4.2-99.zip(r-4.3)
sirt_4.2-99.tgz(r-4.4-x86_64)sirt_4.2-99.tgz(r-4.4-arm64)sirt_4.2-99.tgz(r-4.3-x86_64)sirt_4.2-99.tgz(r-4.3-arm64)
sirt_4.2-99.tar.gz(r-4.5-noble)sirt_4.2-99.tar.gz(r-4.4-noble)
sirt_4.2-99.tgz(r-4.4-emscripten)sirt_4.2-99.tgz(r-4.3-emscripten)
sirt.pdf |sirt.html✨
sirt/json (API)
NEWS
# Install 'sirt' in R: |
install.packages('sirt', repos = c('https://alexanderrobitzsch.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/alexanderrobitzsch/sirt/issues
- data.activity.itempars - Item Parameters Cultural Activities
- data.befki - BEFKI Dataset
- data.befki_resp - BEFKI Dataset
- data.big5 - Dataset Big 5 from 'qgraph' Package
- data.big5.qgraph - Dataset Big 5 from 'qgraph' Package
- data.bs07a - Datasets from Borg and Staufenbiel
- data.eid - Examples with Datasets from Eid and Schmidt
- data.eid.kap4 - Examples with Datasets from Eid and Schmidt
- data.eid.kap5 - Examples with Datasets from Eid and Schmidt
- data.eid.kap6 - Examples with Datasets from Eid and Schmidt
- data.eid.kap7 - Examples with Datasets from Eid and Schmidt
- data.ess2005 - Dataset European Social Survey 2005
- data.g308 - C-Test Datasets
- data.inv4gr - Dataset for Invariance Testing with 4 Groups
- data.liking.science - Dataset 'Liking For Science'
- data.long - Longitudinal Dataset
- data.lsem01 - Datasets for Local Structural Equation Models / Moderated Factor Analysis
- data.lsem02 - Datasets for Local Structural Equation Models / Moderated Factor Analysis
- data.lsem03 - Datasets for Local Structural Equation Models / Moderated Factor Analysis
- data.math - Dataset Mathematics
- data.mcdonald.LSAT6 - Some Datasets from McDonald's _Test Theory_ Book
- data.mcdonald.act15 - Some Datasets from McDonald's _Test Theory_ Book
- data.mcdonald.rape - Some Datasets from McDonald's _Test Theory_ Book
- data.mixed1 - Dataset with Mixed Dichotomous and Polytomous Item Responses
- data.ml1 - Multilevel Datasets
- data.ml2 - Multilevel Datasets
- data.noharm18 - Datasets for NOHARM Analysis
- data.noharmExC - Datasets for NOHARM Analysis
- data.pars1.2pl - Item Parameters for Three Studies Obtained by 1PL and 2PL Estimation
- data.pars1.rasch - Item Parameters for Three Studies Obtained by 1PL and 2PL Estimation
- data.pirlsmissing - Dataset from PIRLS Study with Missing Responses
- data.pisaMath - Dataset PISA Mathematics
- data.pisaPars - Item Parameters from Two PISA Studies
- data.pisaRead - Dataset PISA Reading
- data.pw01 - Datasets for Pairwise Comparisons
- data.ratings1 - Rating Datasets
- data.ratings2 - Rating Datasets
- data.ratings3 - Rating Datasets
- data.raw1 - Dataset with Raw Item Responses
- data.read - Dataset Reading
- data.reck21 - Datasets from Reckase' Book _Multidimensional Item Response Theory_
- data.reck61DAT1 - Datasets from Reckase' Book _Multidimensional Item Response Theory_
- data.reck61DAT2 - Datasets from Reckase' Book _Multidimensional Item Response Theory_
- data.reck73C1a - Datasets from Reckase' Book _Multidimensional Item Response Theory_
- data.reck73C1b - Datasets from Reckase' Book _Multidimensional Item Response Theory_
- data.reck75C2 - Datasets from Reckase' Book _Multidimensional Item Response Theory_
- data.reck78ExA - Datasets from Reckase' Book _Multidimensional Item Response Theory_
- data.reck79ExB - Datasets from Reckase' Book _Multidimensional Item Response Theory_
- data.si01 - Some Example Datasets for the 'sirt' Package
- data.si02 - Some Example Datasets for the 'sirt' Package
- data.si03 - Some Example Datasets for the 'sirt' Package
- data.si04 - Some Example Datasets for the 'sirt' Package
- data.si05 - Some Example Datasets for the 'sirt' Package
- data.si06 - Some Example Datasets for the 'sirt' Package
- data.si07 - Some Example Datasets for the 'sirt' Package
- data.si08 - Some Example Datasets for the 'sirt' Package
- data.si09 - Some Example Datasets for the 'sirt' Package
- data.si10 - Some Example Datasets for the 'sirt' Package
- data.timss - Dataset TIMSS Mathematics
- data.timss07.G8.RUS - TIMSS 2007 Grade 8 Mathematics and Science Russia
- data.trees - Dataset Used in Stoyan, Pommerening and Wuensche
item-response-theoryopenblascpp
Last updated 7 days agofrom:124e4b17e1. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 30 2024 |
R-4.5-win-x86_64 | WARNING | Nov 30 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 30 2024 |
R-4.4-win-x86_64 | WARNING | Nov 30 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 30 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 30 2024 |
R-4.3-win-x86_64 | WARNING | Nov 30 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 30 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 30 2024 |
Exports:automatic.recodebounds_parametersbrm.irfbrm.simbtmbtm_simcategorizeccov.npcfa_meas_invclass.accuracy.raschcolCumsums.sirtconf.detectdata.wide2longdecategorizedetect.indexdexppowdif.logistic.regressiondif.strata.variancedif.variancedimproperdinvgamma2dirichlet.mledirichlet.simuldmlavaaneigenvalues.manymatricesequating.raschequating.rasch.jackknifeexpl.detectf1d.irtfit.adisopfit.isopfuzclusterfuzdiscrgenlogis.momentsginverse_symgom.emgom.jmlgreenyang.reliabilityhard_thresholdinginvariance_alignment_cfa_configinvariance_alignment_constraintsinvariance_alignment_simulateinvariance.alignmentIRT.mleisop.dichisop.polyisop.scoringisop.testL0_polishlatent.regression.em.normallatent.regression.em.raschtypelavaan2mirtlc.2raterslikelihood.adjustmentlinking_haberman_itempars_convertlinking_haberman_itempars_preparelinking.habermanlinking.haberman.lqlinking.haebaralinking.robustlocpolycorlq_fitlq_fit_estimate_powerlsdmlsem_local_weightslsem.bootstraplsem.estimatelsem.MGM.stepfunctionslsem.permutationTestlsem.testmarginal.truescore.reliabilitymcmc_coefmcmc_confintmcmc_derivedParsmcmc_plotmcmc_Rhatmcmc_summarymcmc_vcovmcmc_WaldTestmcmc.2pnomcmc.2pno.mlmcmc.2pnohmcmc.3pno.testletmcmc.list.descriptivesmcmclist2codamd.pattern.sirtmirt_summarymirt.specify.partablemirt.wrapper.coefmirt.wrapper.fscoresmirt.wrapper.itemplotmirt.wrapper.posteriormle.pcm.groupmodelfit.cor.polymodelfit.sirtmonoreg.colwisemonoreg.rowwisemove_variables_dfnedelsky.irfnedelsky.latrespnedelsky.simnoharm.sirtnp.dichparmsummary_extendpbivnorm2pcm.conversionpcm.fitperson.parameter.rasch.copulapersonfit.statpgenlogisplausible.value.imputation.raschtypepolychoric2powpredict_scale_group_meansprint_digitsprior_model_parseprmse.subscores.scalesprob.guttmanQ3Q3.testletqmc.nodesR2conquestR2noharmR2noharm.EAPR2noharm.jackkniferasch.conquestrasch.copula2rasch.copula3rasch.evm.pcmrasch.jmlrasch.jml.biascorrrasch.jml.jackknife1rasch.mirtlcrasch.mml2rasch.pairwiserasch.pairwise.itemclusterrasch.pml2rasch.pml3rasch.proxrasch.varead.multidimpvread.pimapread.pvread.showread.show.regressionread.show.termreliability.nonlinearSEMresp_groupwiserexppowrinvgamma2rm_proc_datarm.facetsrm.sdtrmvnrowCumsums.sirtrowIntervalIndex.sirtrowKSmallest.sirtrowKSmallest2.sirtrowMaxs.sirtrowMins.sirtruvnscale_group_meanssia.sirtsim.qm.ramsaysim.rasch.depsim.raschtypesirt_abs_smoothsirt_antifisherzsirt_attach_list_elementssirt_colMaxssirt_colMeanssirt_colMedianssirt_colMinssirt_colSDssirt_dnorm_discretesirt_eigenvaluessirt_fisherzsirt_matrix2sirt_optimizersirt_permutationssirt_rbind_fillsirt_rcpp_discrete_inversesirt_rcpp_polychoric2sirt_sum_normsirt_summary_print_callsirt_summary_print_objectssirt_summary_print_packagesirt_summary_print_package_rsessionsirt_summary_print_rsessionsmirtsoft_thresholdingstratified.cronbach.alphasummary.R2noharmtam2mirttestlet.marginalizedtestlet.yen.q3tetrachoric2tracemattruescore.irtunidim.test.csnwle.raschwle.rasch.jackknifexxirtxxirt_createDiscItemxxirt_createParTablexxirt_createThetaDistributionxxirt_hessianxxirt_modifyParTablexxirt_sandwich_pmlyen.q3
Dependencies:admiscCDMlatticeMatrixmvtnormpbapplypbvpolycorRcppRcppArmadilloTAM